Chris' Math Blog

Arc Length in Different Coordinate Systems

This post will deal with converting the arc length formulas in two and three dimensions from rectangular coordinates to polar (2-D), cylindrical (3-D) and spherical (3-D) coordinates.

Two Dimensions

In \mathbb{R}^2, we define the arc length of a function y=f(x) over the interval a\leq x\leq b to be

L=\displaystyle\int_a^b \sqrt{1+\left(\frac{\,dy}{\,dx}\right)^2}\,dx

If we define a parametric function x=x(t) and y=y(t), we observe that \dfrac{\,dy}{\,dx}=\dfrac{\,dy/\,dt}{\,dx/\,dt}.  Substituting this into the arc length formula yields

\displaystyle\int_a^b\sqrt{1+\left(\frac{\,dy/\,dt}{\,dx/\,dt}\right)^2}\,dx

Getting a common denominator gives us

\begin{aligned}\displaystyle\int_a^b\sqrt{\frac{(\,dx/\,dt)^2+(\,dy/\,dt)^2}{(\,dx/\,dt)^2}}\,dt&=\int_a^b\sqrt{\left(\frac{\,dx}{\,dt}\right)^2+\left(\frac{\,dy}{\,dt}\right)^2}\frac{\,dt}{\,dx}\,dx\\ &=\int_a^b\sqrt{\left(\frac{\,dx}{\,dt}\right)^2+\left(\frac{\,dy}{\,dt}\right)^2}\,dt\end{aligned}

In polar coordinates, we know that x=r\cos\theta and y=r\sin\theta.   If r=r(t) and \theta=\theta(t), then we observe that

\dfrac{\,dy}{\,dt}=r\cos\theta\dfrac{\,d\theta}{\,dt}+\sin\theta\dfrac{\,dr}{\,dt}\text{ and }\dfrac{\,dx}{\,dt}=\cos\theta\dfrac{\,dr}{\,dt}-r\sin\theta\dfrac{\,d\theta}{\,dt}

Therefore,

\begin{aligned}L &=\displaystyle\int_{\alpha}^{\beta}\sqrt{\left(\cos\theta\frac{\,dr}{\,dt}-r\sin\theta\frac{\,d\theta}{\,dt}\right)^2+\left(r\cos\theta\frac{\,d\theta}{\,dt}+\sin\theta\frac{\,dr}{\,dt}\right)^2}\,dt\\ \implies L&=\displaystyle\int_{\alpha}^{\beta}\sqrt{\left(\frac{\,dr}{\,dt}\right)^2+r^2\left(\frac{\,d\theta}{\,dt}\right)^2}\,dt\end{aligned}

\begin{aligned}\implies L &=\displaystyle\int_{\alpha}^{\beta}\sqrt{\left(\frac{\,d\theta}{\,dt}\right)^2\left[r^2+\left(\frac{\,dr}{\,d\theta}\right)^2\right]}\,dt\\\implies L &=\displaystyle\int_{\alpha}^{\beta}\sqrt{r^2+\left(\frac{\,dr}{\,d\theta}\right)^2}\frac{\,d\theta}{\,dt}\,dt\end{aligned}

\begin{aligned}\implies L&=\displaystyle\int_{\alpha}^{\beta}\sqrt{r^2+\left(\frac{\,dr}{\,d\theta}\right)^2}\,d\theta\end{aligned}

Three Dimensions

Let us now consider two additional coordinate systems in \mathbb{R}^3:  the cylindrical and spherical coordinate system.

The cylindrical coordinate system is a 3-D version of the polar coordinate system in 2-D with an extra component for z.  We can slightly modify our arc length equation in polar to make it apply to the cylindrical coordinate system given that r=r(t), \theta=\theta(t).  We start from this step:

\displaystyle\int_{a}^{b}\sqrt{\left(\frac{\,dr}{\,dt}\right)^2+\left(\frac{\,d\theta}{\,dt}\right)^2}\,dt

From rectangular coordinates, the arc length of a parameterized function is

\displaystyle\int_a^b\sqrt{\left(\frac{\,dx}{\,dt}\right)^2+\left(\frac{\,dy}{\,dt}\right)^2+\left(\frac{\,dz}{\,dt}\right)^2}\,dt.

So from this, it follows that in cylindrical coordinates, we have arc length defined to be

\displaystyle\int_a^b\sqrt{\left(\frac{\,dr}{\,dt}\right)^2+r^2\left(\frac{\,d\theta}{\,dt}\right)^2+\left(\frac{\,dz}{\,dt}\right)^2}\,dt

To define arc length in the spherical coordinate system, we need to know first how to convert points from spherical to cylindrical coordinates (and then spherical to rectangular).   I leave without proof that r=\rho\sin\phi, \theta=\theta, and z=\rho\cos\phi.  Since we know that x=r\cos\theta, y=r\sin\theta, and z=z goes from cylindrical to rectangular, it follows that x=\rho\sin\phi\cos\theta, y=\rho\sin\phi\sin\theta, and z=\rho\cos\phi takes points in spherical coordinates and converts them into points from the rectangular coordinate system.

Again we consider the arc length formula for a parametric curve in the rectangular coordinate system:

\displaystyle\int_a^b\sqrt{\left(\frac{\,dx}{\,dt}\right)^2+\left(\frac{\,dy}{\,dt}\right)^2+\left(\frac{\,dz}{\,dt}\right)^2}\,dt

If we let \rho=\rho(t), \phi=\phi(t) and \theta=\theta(t), we now can find expressions for \frac{\,dx}{\,dt}, \frac{\,dy}{\,dt} and \frac{\,dz}{\,dt}.  I leave the calculations of these three to the reader, but I will, for the sake of space, write the values to each one.

Since x=\rho\sin\phi\cos\theta, we have

\dfrac{\,dx}{\,dt}=\sin\phi\cos\theta\dfrac{\,d\rho}{\,dt}-\rho\sin\phi\sin\theta\dfrac{\,d\theta}{\,dt}+\rho\cos\phi\cos\theta\dfrac{\,d\phi}{\,dt}

Since y=\rho\sin\phi\sin\theta, we have

\dfrac{\,dy}{\,dt}=\sin\phi\sin\theta\dfrac{\,d\rho}{\,dt}+\rho\sin\phi\cos\theta\dfrac{\,d\theta}{\,dt}+\rho\cos\phi\sin\theta\dfrac{\,phi}{\,dt}

Since z=\rho\cos\phi, we have

\dfrac{\,dz}{\,dt}=\cos\phi\dfrac{\,d\rho}{\,dt}-\rho\sin\phi\dfrac{\,d\phi}{\,dt}

When you plug this into the rectangular arc length formula and after a ton of painful simplifying (which I have left out to spare your sanity), we see that the arc length formula in spherical coordinates is:

\displaystyle\int_a^b\sqrt{\left(\frac{\,d\rho}{\,dt}\right)^2+\rho^2\sin^2\phi\left(\frac{\,d\theta}{\,dt}\right)^2+\rho^2\left(\frac{\,d\phi}{\,dt}\right)^2}\,dt

Advertisements

February 24, 2010 - Posted by | Calculus

No comments yet.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: